

The genetic characterisation of novel multi-addition doubled haploid lines derived from triticale \times wheat hybrids

G. Wang¹, J. Ji¹, Y-B. Wang¹, H. Hu¹, I. P. King², J. W. Snape²

¹ Institute of Genetics, Academia Sinica, Beijing, 100101, China

² Cambridge Laboratory, JI Centre for Plant Science Research, Colney Lane, Norwich, NR4 7UJ, England

Received: 2 June 1993 / Accepted: 16 June 1993

Abstract. Two novel 46-chromosome doubled haploid lines, W66 and M17, derived from separate hexaploid triticale \times bread wheat crosses, were characterised using cytological and biochemical markers. Both lines were shown to be relatively stable cytologically, over 11 and 8 generations of selfing, respectively. By examining mitotic and meiotic chromosomes, the stabilities of the two lines were shown to be similar with frequencies of $2n = 46$ in 74.2–85.5% of cells. However, over selfed generations, the rye chromosomes were shown to have lost some of their heterochromatin, which made it difficult to establish their continued presence using cytological techniques, such as C-banding alone. Cytological evidence from pairing studies, C-banding, and fluorescence in-situ hybridization, showed that both M17 and W66 are wheat/rye multi-addition lines with rye chromosome constitutions of 1R + 6R, and 1R + 4R, respectively. These conclusions were confirmed by isozyme and storage-protein analysis.

Key words: Triticale \times wheat – Doubled haploids – Biochemical markers – In situ hybridization

Introduction

In the Triticeae, the transfer of genes between species has been developed as an important method for crop improvement. Rye (*Secale cereale* L.), in particular, has been shown to be one of the most successful donors for this purpose to wheat since it carries many useful genes to further wheat breeding. The synthesis of triticale is,

usually, the first step for introducing rye chromosomes, and this is followed, conventionally, by crossing the derived triticale with wheat. However, this procedure presents problems since in the F_1 hybrid no pairing occurs between the R- and D-genome chromosomes resulting, on selfing or backcrossing, in low seed set and sterility in the few progeny that can be produced. An alternative approach is to use the F_1 hybrids in anther-culture procedures, and employing this method a number of lines with different rye constitutions have been obtained (Hu et al. 1988). Among a population of such lines, some were found with the unusual chromosome constitution of $2n = 46$; these are difficult or impossible to obtain by conventional methods. The genetic characterisation of these new types of wheat, and their stabilities, is the first step in their possible use both for further genetic analysis and for their utility in wheat breeding.

A number of techniques can be used for alien-wheat chromosome identification. Among these, chromosome-banding methods, such as C-banding and N-banding, have been the most widely used. In triticale, for example, rye chromosomes are usually identified by their characteristic heterochromatic bands. However, rye chromosomes can lose their heterochromatin in a wheat background, and to determine the continued presence of rye chromosomes becomes difficult by banding techniques after many selfed generations. Consequently, it becomes necessary to resort to biochemical and molecular markers which have now been shown to be effective for alien-wheat chromosome identification (Gale and Sharp 1988) and usefully complement the cytological techniques of C-banding and in-situ hybridization.

The purpose of the present study was to characterise two novel doubled haploid lines with a chromosome

Communicated by G. Wenzel
Correspondence to: J. W. Snape

constitution of $2n = 46$ by analysing cytological and biochemical markers; and to study the stabilities of these two unusual lines by observing both mitotic and meiotic chromosomes.

Materials and methods

Materials

W66 was derived from the cross of triticale cv 'Rosner' \times wheat cv 'Kedong 58'; and M17 was derived from the cross of triticale cv 'Beagle' \times 'Kedong 58'. Seeds for this study were of the H_7-H_{10} generations for W66, and the H_5-H_7 generations for M17, after selfing from the original doubled haploid plants.

As controls for the analysis of biochemical markers 'Chinese Spring' (CS), its aneuploid lines, and addition lines of chromosomes of rye cv 'Imperial' into CS were also used.

Cytological analysis

The number of chromosomes and the chromosomal stabilities of W66 and M17 over generations was determined by examining mitosis in root-tip cells and meiosis in pollen mother cells using the acetocarmine staining procedure as described by Endo (1986). Genomic in-situ hybridization (GISB) using total rye DNA as a probe was used to identify the number of rye chromosomes present in root-tip mitotic cells of M17 and W66, following the technique of Schwarzacher et al. (1992). The presence of particular rye chromosomes was determined by the C-banding technique described by Tao and Hu (1989), and individual rye chromosomes identified according to the standard pattern described by Sybenga (1983).

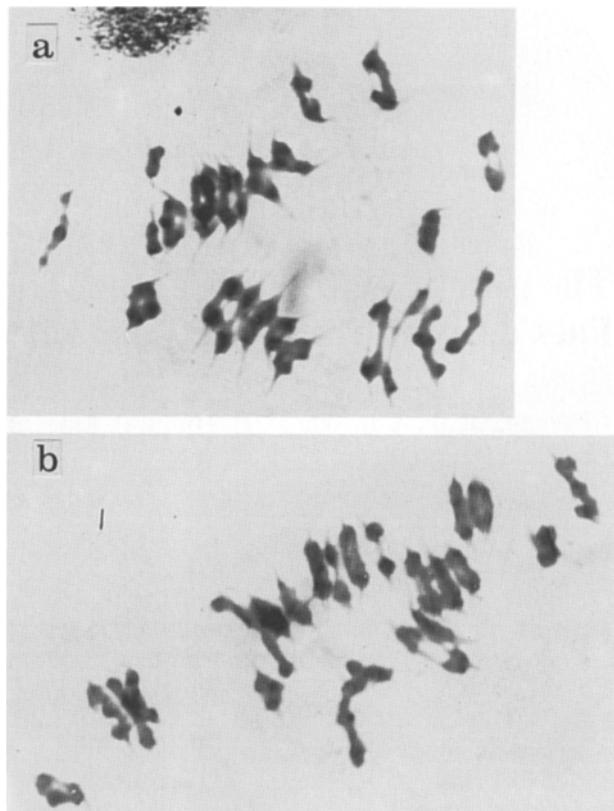
Analysis of biochemical markers

Five biochemical marker systems were used to characterize the lines for the different homoeologous groups. However, since the original triticale parents, 'Rosner' and 'Beagle', are known not to possess 2R (Tao and Hu 1989), this homoeologous group was not studied.

High-molecular-weight (HMW) subunit composition. Ten-percent polyacrylamide-gel electrophoresis (PAGE) with sodium dodecyl sulphate (SDS) was used for analysis of HMW subunit composition according to the techniques of Payne and Corfield (1979).

Esterase isozyme profiles. Isoelectric focusing (IEF) was used to identify both esterase-1 and esterase-5 phenotypes following the method described by Ainsworth et al. (1984) with modifications by Liu and Gale (1990) and Liu (1991).

Aminopeptidase isozyme profiles. Isozyme variation for aminopeptidase was examined following the method described by Koebner and Martin (1989).


Iodine binding-factor profiles. Iodine binding-factor variation (*Ibf-1*) was analyzed as described by Liu and Gale (1989).

α -amylase isozyme profiles. Isozyme variation for α -amylase was evaluated as described by Ainsworth et al. (1987).

Results and discussion

The genetic constitution of W66 and M17

An examination of mitotic cells in acetocarmine-stained root-tip preparations confirmed that both W66

Fig. 1a, b. Metaphase-I of meiosis in W66 (a) M17 (b), showing the presence of 23 bivalents in each line

and M17 have a somatic chromosome number of $2n = 46$ (data not shown). Meiotic analysis of the lines indicated that pairing was generally regular with 23 bivalents (Fig. 1a, b). C-banding of root-tip preparations showed that W66 clearly carries at least one pair of rye chromosomes, 1R (Fig. 2a), and that M17 carries at least two pairs, 1R and 6R (Fig. 2b). In W66, in particular, a loss of the characteristic heterochromatin bands on the rye chromosomes was observed over selfing generations, and this made it difficult to verify the continued presence or identity of other rye chromosomes. Therefore, GISB was used to verify the presence and number of rye chromosomes in both lines. At the H_8 and H_{10} generations, in M17 and W66, respectively, there were clearly four complete rye chromosomes amongst a total chromosome complement of 46 (Fig. 3a for M17). Occasionally, in some root-tip cells, rye telochromosomes and dicentrics were also found (data not shown). Also occasional cells contained only three (Fig. 3b) and sometimes two rye chromosomes, or the rye chromosomes had deletions, indicative of some instability in both lines. Nevertheless, in general, these cytological results indicate that both lines are stable rye double-addition lines.

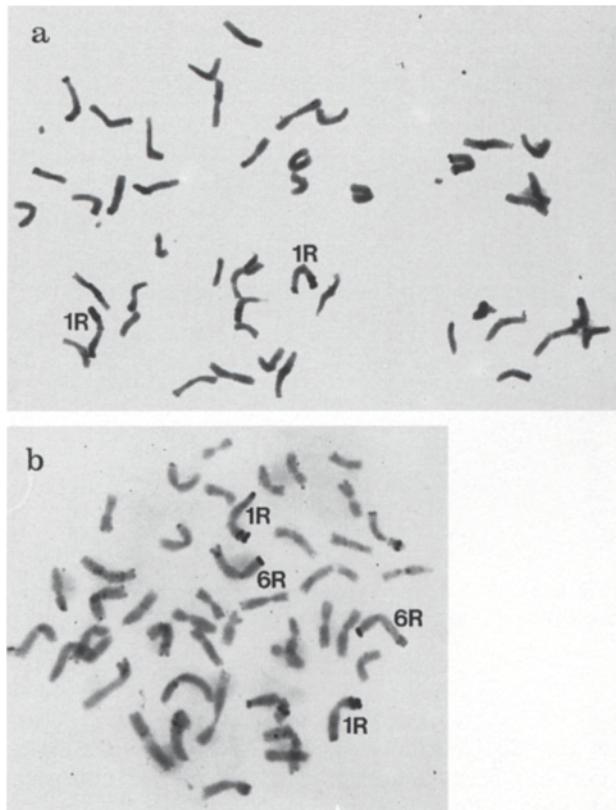


Fig. 2a, b. C-banded mitotic metaphase chromosomes of W66 ($2n = 46$) (a) showing the presence of 1R and M17 (b) showing 1R and 6R

Biochemical markers known to be located on each rye chromosome were then used for further characterization to confirm the identity of the rye chromosomes.

Homoeologous group 1. The genes encoding HMW subunits of glutenin, *Glu-1*, are located on the long arms of wheat chromosomes 1A, 1B and 1D and rye chromosome 1R. Thus SDS-PAGE can be used to confirm the presence of the 1R long arms (Lawrence and Shepherd 1981; Payne 1987). As shown in Fig. 4, the SDS-PAGE patterns of reduced glutenins of W66 and M17 showed that rye chromosome 1R is present in both lines, which agreed with the cytological results. However, both M17 and W66 also contained additional bands not present in either parental controls. This may indicate that the original parents which formed the F_1 were slightly different genetically from the controls used here, perhaps due to heterogeneity in the original lines.

Homoeologous group 4. Genes encoding aminopeptidase-2 are reported to be located on wheat chromosomes 4A, 4B and 4D and rye chromosome 4R (Koebner and Martin 1989). A comparison of the parents 'Rosner' and 'Kedong 58', with W66 showed that rye

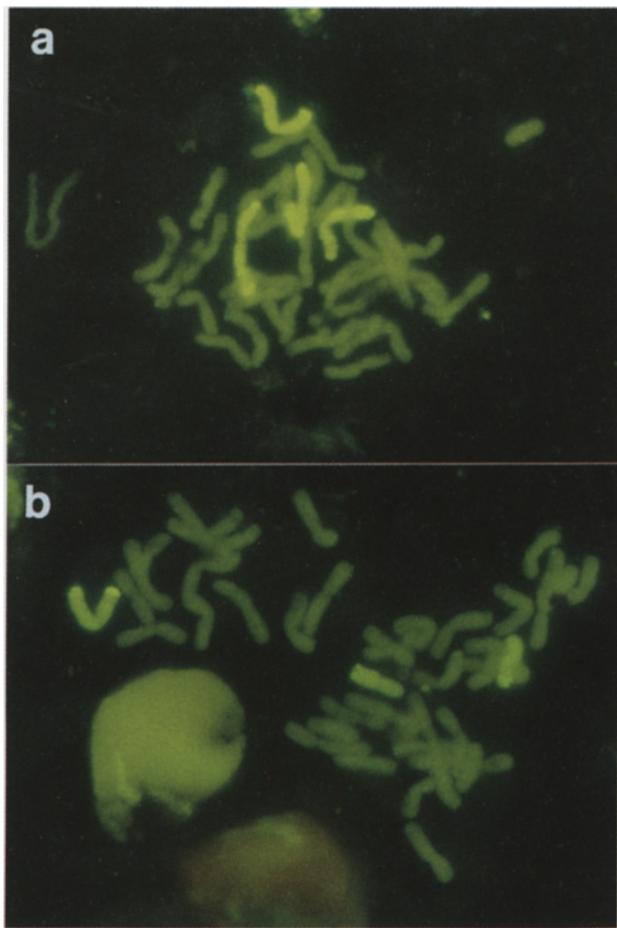


Fig. 3a, b. GISH using total rye genomic DNA as a probe. a A root-tip cell of M17 showing four rye chromosomes; b A root-tip cell of W66 showing only three rye chromosomes, the two on the right of the photograph also appearing to have terminal deletions in one arm

chromosome 4R is present in W66 (Fig. 5), but absent in M17 (data not shown).

Homoeologous group 6. Through analysis of *Est-5* variation, controlled by genes located on rye chromosome 6R (Artemova 1982), it was shown that 6R is absent from W66. However, as predicted from the cytological studies, the presence of 6R in M17 was confirmed (Fig. 6).

Homoeologous groups 3, 5 and 7. Three other biochemical marker systems, *Est-1* (for 3R), *Ibf-1* (for 5R), and α -amylase (for 7R), were also used to characterize W66 and M17 (Hart and Langston 1977). No evidence for the presence of either 3R, 5R or 7R in the two doubled haploid lines was obtained (data not shown).

All of the above results lead to the conclusion that W66 is a double-disomic addition line with a rye chromosome constitution of 1R and 4R, and that M17

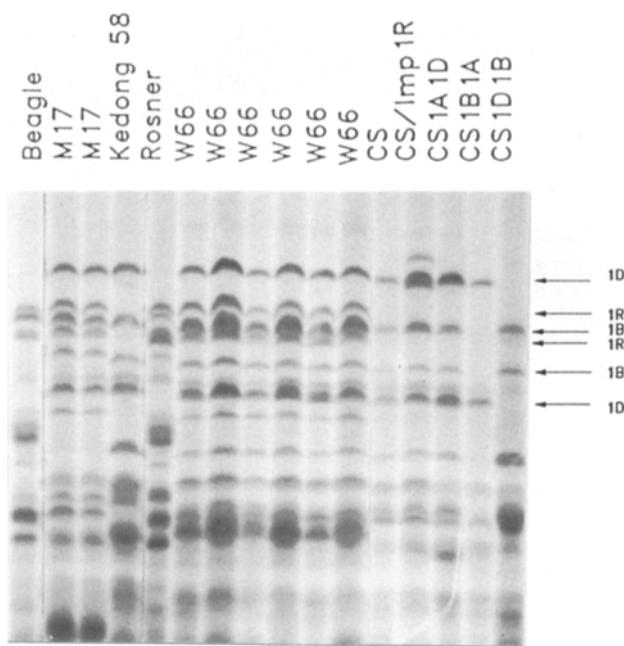


Fig. 4. SDS-PAGE patterns of individual plants of W66 and M17, parents, and controls. (CS1A1D = Chinese Spring nullisomic 1A-tetrasomic 1D; CS1B1A = nullisomic 1B-tetrasomic 1A; CS1D1B = nullisomic 1D-tetrasomic 1B), showing the presence of 1R HMW subunits

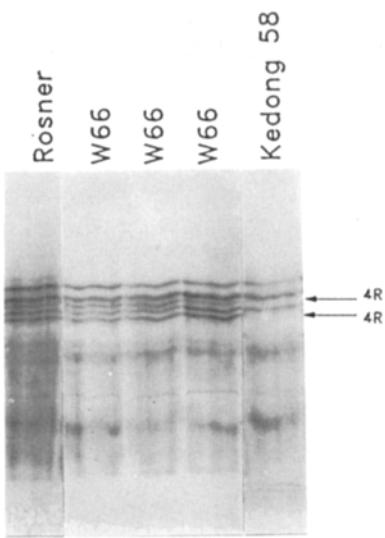


Fig. 5. Aminopeptidase-2 IEF phenotypes of individual plants of W66 and its parents showing the presence of 4R in W66

is a double-disomic addition line with a rye chromosome constitution of 1R and 6R.

The chromosomal stabilities of W66 and M17

Chromosomal variation has frequently been reported in regenerants derived from anther culture (De Buyser

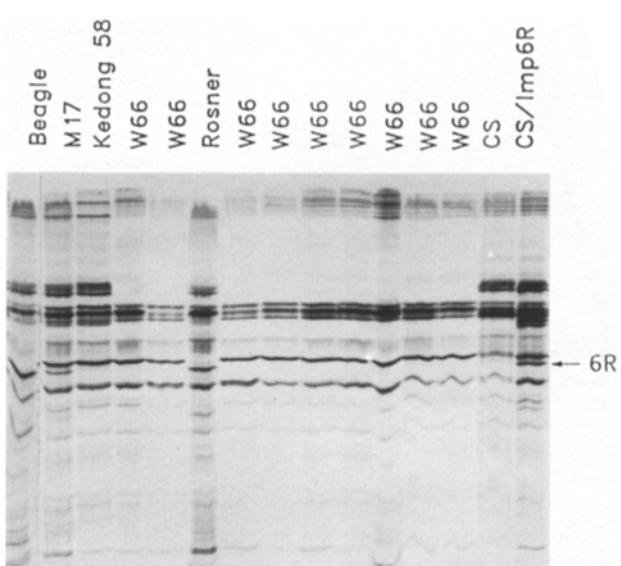


Fig. 6. Esterase-5 patterns of individual plants of W66 and M17, parents and controls, showing the presence of 6R in M17

et al. 1985; Charmet et al. 1986). However, little attention has been focused directly on the chromosomal stability of lines in somatic cells or over selfing generations. A study of the stability of these unusual multi-addition lines was, therefore, carried out. From 1980 to 1991 seed of 11 generations of W66, and eight of M17, were accumulated, and the later generations studied for chromosome constitution by examining mitotic and meiotic cells in acetocarmine-stained preparations.

Somatic stability was measured as the frequency of root-tip cells which retained the 46-chromosome constitution. From studies of several plants within each generation the cytological data showed that W66 and M17 had similar somatic stabilities, where the stability of W66 was 78.3–83.3% in mitotic cells from the 7th to 10th generations (Table 1), and the stability of M17 was 74.2–85.5% from the 5th to 7th generations (Table 2). Meiotic stability was measured as the expected frequency of pollen grains with 23 chromosomes, estimated from chromosome pairing studies of PMCs. In W66, 75.5–84.7% of pollen grains were expected to be of $n = 23$ in plants from the 8th to 10th generations (Table 1), with 76.0–84.4% in M17 plants from the 5th to 7th generations (Table 2). These results suggest that there is little difference in the stabilities of W66 and M17 within or over different generations, either in mitotic or meiotic cells. It can be concluded that these multi-addition lines of wheat derived by anther culture, which are difficult to obtain by conventional programmes, can be stably maintained.

In rye/wheat introgressions the loss of the characteristic heterochromatin bands of the rye chromosomes

Table 1. Frequencies of different chromosome constitutions in mitotic and meiotic cells of W66

Mitotic cells (root tips)

Generation	2n = 42	43	44	45	46	47	48	% of cells, 2n = 46
W66-2-4-10-7-3 (H ₇)	2	1	4	3	36	0	0	78.3
W66-2-4-10-7-3-10 (H ₈)	1	1	2	1	25	0	0	83.3
W66-2-4-10-7-3-10-4 (H ₉)	3	2	12	3	93	3	1	79.5
W66-2-4-10-7-3-10-4-7 (H ₁₀)	2	1	5	8	115	7	4	81.0

Meiotic cells (pollen mother cells)								Expected % of pollen grains n = 23	
Generation	Chromosome configurations								
	23II	46I	22II + 2I	45I	22II + 1I	22II + t	22II		
W66-2-4-10-7-3-10 (H ₈)	21	3	2	8	3	2	3	79.4	
W66-2-4-10-7-3-10-4 (H ₉)	17	6	3	9	2	1	4	75.5	
W66-2-4-10-7-3-10-4-7 (H ₁₀)	32	4	7	6	8	0	4	84.7	

Table 2. Frequencies of different chromosome constitutions in mitotic and meiotic cells of M17

Mitotic cells (root tips)

Generation	2n = 42	43	44	45	46	47	% of cells, 2n = 46
M17-1-7-3 (H ₅)	1	0	3	4	47	0	85.5
M17-1-7-3-4 (H ₆)	7	3	5	8	72	2	74.2
M17-1-7-3-4-1 (H ₇)	5	1	3	6	52	0	77.6

Generation	Chromosome configurations							Expected % of pollen grains n = 23
	23II	46I	22II + 2I	45I	22II + 1I	22II + t	22II	
M17-1-7-3- (H ₅)	18	11	3	6	3	2	4	76.0
M17-1-7-3-4 (H ₆)	27	27	4	10	4	0	5	84.4
M17-1-7-3-4-1 (H ₇)	22	19	2	4	7	1	8	77.0

over selfing generations to produce modified chromosomes (Gustafson 1982) makes it difficult to identify their continued presence cytologically. In W66, at the H₁₁ generation only the 1R chromosome could be observed from C-banding, whereas the other pair of rye chromosomes could not be identified by this technique, although its presence was shown by GISH. M17 had complete 1R and 6R rye chromosomes at the fourth generation, but subsequently the loss of heterochromatin occurred where the C-bands disappeared completely on 6R and partially on 1R by the seventh generation.

The loss of the rye heterochromatin may result in greater cytological stability of the multi-addition condition. Previous reports have found that chiasma frequency was increased by one chiasma per pollen mother cell when a modified 7RL (Merker 1976) or a modified 6RS (Roupkias and Kaltsikes 1977) was present in the disomic condition in triticale. Also a previous analysis of early endosperm development showed that triticale lines in which chromosomes 4R and 6R lacked their heterochromatic blocks had a significantly lower frequency of aberrant endosperm nuclei and improved meiotic stability and test weight

at maturity than did control lines where blocks were present (Bennett and Gustafson 1982; Gustafson and Bennett 1982). A modified 1R also affected chromosome pairing in a wheat background, although it did not have an effect in rye itself (Naranjo and Lacadena 1980). These observations might explain why the loss of heterochromatin occurred in W66 and M17, and also why these two lines with a complicated rye chromosome constitution could be stably maintained over 11 (W66) and eight generations (M17) of selfing.

The two lines examined here appear as stable, cytologically, as disomic rye/wheat addition lines although not as stable as wheat itself. For example, the 5R disomic addition line has a reported stability of 60–64%, the 4R addition line a stability of 70–74%, and the other five addition lines similar stabilities of 80–95% (Kaltsikes et al. 1984). The composition of W66 and M17 is more complicated than single disomic rye/wheat addition lines, and they may be expected to be less stable. However, as pointed out above, the difference in stabilities among different generations of these two lines was only between 74.2–85.5%, which is similar to that observed in normal disomic addition lines. Nevertheless, it is perhaps surprising that these two

unusual doubled haploid lines are relatively stable, compared to normal alien addition lines.

Stable wheat lines with a chromosome number of $2n=46$ are difficult to obtain naturally or by conventional crossing since, generally, the probability of fusion between female and male gametes with the same chromosome composition is low because of their rare frequency (Muntzing 1979). However, this is easily achieved by anther culture (Tao and Hu 1989). Using the same crosses as the present study, Tao and Hu (1989) found that gametes with 23 and 24 chromosomes formed a predominant portion of the pollen plants regenerated in their experiments. Thus, anther culture is a valuable technique for producing novel chromosome combinations, which not only have intrinsic interest but can serve as starting points for alien introgressions or as breeding material in their own right.

Acknowledgements. We are grateful to R. M. D. Koebner, C. J. Liu and W. J. Rogers for their advice in techniques and constructive discussions, and to A. J. Worland and S. M. Reader for the supply of genetic stocks. G. Wang is grateful to The Royal Society for the provision of a Royal Society Fellowship.

References

Ainsworth CC, Gale MD, Baird S (1984) The genetic control of grain esterase in hexaploid wheat. 1. Allelic variation. *Theor Appl Genet* 68: 219–226

Ainsworth CC, Miller TE, Gale MD (1987) α -amylase and β -amylase homoeoloci in species related to wheat. *Genet Res* 49: 93–103

Artemova NV (1982) Chromosomal control of the isoenzymes of alcohol dehydrogenase, esterase, and β -amylase in different rye varieties *Secale cereale*. *Genetika* 18: 661–667

Bennett MD, Gustafson JP (1982) The effect of telomeric heterochromatin from *Secale cereale* L. on triticale (\times Triticosecale Wittmack). I. The presence or absence of blocks of heterochromatin in isogenic backgrounds. *Can J Genet Cytol* 24: 93–100

Charmet G, Bernard S, Bernard M (1986) Origin of aneuploid plants obtained by anther culture in triticale. *Can J Genet Cytol* 28: 444–452

De Buysse J, Henry Y, Taleb G (1985) Wheat androgenesis: cytogenetical analysis and agronomic performance of doubled haploids. *Z Pflanzenzuchtg* 95: 23–34

Endo TR (1986) Complete identification of common wheat chromosomes by means of the C-banding technique. *Jpn J Genet* 61: 89–93

Gale MD, Sharp PJ (1988) Genetic markers in wheat-developments and prospects. In: Miller TE, Koebner RMD (eds) *Proc 7th Int Wheat Genet Symp*. Institute of Plant Science Research, Cambridge, pp 469–475

Gustafson JP (1982) Cytogenetics of triticale. In: Swaminathan MS, Gupta PK, Sinha U (eds) *Cytogenetics of crop plants*. Macmillan India Ltd, pp 225–250

Gustafson JP, Bennett MD (1982) The effect of telomeric heterochromatin from *Secale cereale* L. on triticale (\times Triticosecale Wittmack). II. The influence of several blocks of telomeric heterochromatin on early endosperm development and kernel characteristics at maturity. *Can J Genet Cytol* 24: 83–92

Hart GE, Langston PJ (1977) Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. *Heredity* 39: 263–277

Hu H, Tao YZ, Wang G (1988) Creating new types of wheat via anther culture. In: Miller TE, Koebner RMD (eds) *Proc 7th Int Wheat Genet Symp*. Institute of Plant Science Research, Cambridge, pp 1101–1104

Kalsikes PJ, Gustafson JP, Lukaszewski AJ (1984) Chromosome engineering in triticale. *Can J Genet Cytol* 26: 105–110

Koebner RMD, Martin PK (1989) Chromosomal control of the aminopeptidases of wheat and its close relatives. *Theor Appl Genet* 78: 657–664

Lawrence GJ, Shepherd KW (1981) Inheritance of glutenin protein subunits of wheat. *Theor Appl Genet* 60: 333–337

Liu CJ (1991) Biochemical markers in wheat. PhD thesis, University of Cambridge

Liu CJ, Gale MD (1989) *Ibf* (Iodine-binding factor), a highly variable marker system in Triticeae. *Theor Appl Genet* 77: 233–240

Liu CJ, Gale MD (1990) *Est-7*, a set of genes controlling green tissue esterases in wheat and related species. *Theor Appl Genet* 79: 781–784

Merker A (1976) The cytogenetic effect of heterochromatin in hexaploid triticale. *Hereditas* 83: 215–222

Muntzing A (1979) Triticale: results and problems. *Fortschritte der Pflanzenzuchung. Advances in Plant Breeding* 10. Patey, Berlin 103 pages

Naranjo T, Lacadena JR (1980) Interaction between wheat chromosomes and rye telomeric heterochromatin on meiotic pairing of chromosome pair 1R of rye in wheat-rye derivatives. *Chromosoma* 81: 249–261

Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. *Annu Rev Plant Physiol* 38: 141–153

Payne PI, Corfield KG (1979) Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. *Planta* 145: 83–88

Roupakias DG, Kalsikes PJ (1977) The effect of telomeric heterochromatin on chromosome pairing of hexaploid triticale. *Can J Genet Cytol* 19: 543–548

Schwarzacher T, Anamthawat-Jonsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M and Heslop-Harrison JS (1992) Genomic in-situ hybridization to identify alien chromosome segments in wheat. *Theor Appl Genet* 84: 778–786

Sybenga L (1983) Rye chromosome nomenclature and homoeology relationships. Workshop report. *Z Pflanzenzuchtg* 90: 297–304

Tao YZ, Hu H (1989) Recombination of D-R chromosome in pollen plants cultured from hybrid of 6x Triticale \times common wheat. *Theor Appl Genet* 77: 899–904